Testing the nature of compact objects with gravitational waves

Paolo Pani
Sapienza University of Rome & INFN Roma1
https://web.uniroma1.it/gmunu
Why?

- **Paradigm:** any compact object heavier than few M_{sun} must be a black hole (BH)
- Observations of exotic compact objects (ECOs) would imply new physics / new matter
Why?

- **Paradigm:** any compact object heavier than few M_{sun} must be a black hole (BH)

- Observations of exotic compact objects (ECOs) would imply new physics / new matter

1. BHs and neutron stars might co-exist with other “species”
 - ECOs might explain LIGO/Virgo *mass-gap* events (GW190814, GW190521)
 - ECOs can form in GR with new (dark?) matter fields (e.g. boson/axion stars)
Why?

- **Paradigm**: any compact object heavier than few M_{sun} must be a black hole (BH)

- Observations of exotic compact objects (ECOs) would imply new physics / new matter

1. BHs and neutron stars might co-exist with other “species”
 - ECOs might explain LIGO/Virgo *mass-gap* events (GW190814, GW190521)
 - ECOs can form in GR with new (dark?) matter fields (e.g. boson/axion stars)

2. Strong theoretical motivation (singularity and/or information-loss problems):
 - New physics at the horizon (e.g. firewalls, nonlocality) [Almheri+, Giddings+, 2012-2017]
 - Regular, horizonless compact objects (e.g. fuzzballs) [Mathur+, Bena+, Bianchi+, Giusto+, ...]
Why?

- **Paradigm:** any compact object heavier than few M_{sun} must be a black hole (BH)

- Observations of exotic compact objects (ECOs) would imply new physics / new matter

1. BHs and neutron stars might co-exist with other “species”
 - ECOs might explain LIGO/Virgo *mass-gap* events (GW190814, GW190521)
 - ECOs can form in GR with new (dark?) matter fields (e.g. boson/axion stars)

2. Strong theoretical motivation (singularity and/or information-loss problems):
 - New physics at the horizon (e.g. firewalls, nonlocality) [Almheri+, Giddings+, 2012-2017]
 - Regular, horizonless compact objects (e.g. fuzzballs) [Mathur+, Bena+, Bianchi+, Giusto+, ...]

3. At the very least: quantify the “BH-ness” of GW sources across mass ranges
The zoo of ECOs

Solutions to GR with exotic matter sources
(e.g. anisotropic stars, boson stars, axion stars, gravastars, wormholes)

Solutions to modified gravity
(e.g. fuzzballs/microstates, 2-2 holes, superspinars, wormholes)

- No sharp distinction in some cases

- Some ECOs require modified gravity only in the interior / close to the horizon → assuming GR in the exterior is often a good approx.

- Here we focus on GW phenomenology *agnostically*

Quantifying the shades of darkness
Quantifying the shades of darkness

Compactness

ϵ

ϵ

ϵ

$r_0 = r_+(1 + \epsilon)$
Quantifying the shades of darkness

\(R \)

Reflectivity

Compactness

\[r_0 = r_+(1 + \epsilon) \]
Quantifying the shades of darkness

![Black hole diagram]

Reflectivity

Compactness

$\epsilon = 0 \quad R = 0$

$r_0 = r_+ (1 + \epsilon)$
Quantifying the shades of darkness

\[R \]

Reflectivity

\[\epsilon = 0 \quad R = 0 \]

Black hole

Compactness

\[r_0 = r_+ (1 + \epsilon) \]

~Small compactness
No absorption
(e.g. boson stars)
Quantifying the shades of darkness

- Small compactness
 - No absorption
 - (e.g. boson stars)

- Small compactness
 - Large absorption
 - (e.g. diffuse fuzzballs)

Reflectivity

Compactness

\mathcal{R}

$\epsilon = 0 \quad \mathcal{R} = 0$

$r_0 = r_+ (1 + \epsilon)$
Quantifying the shades of darkness

Large compactness
No absorption
(e.g. gravastars)

~Small compactness
No absorption
(e.g. boson stars)

~Small compactness
Large absorption
(e.g. diffuse fuzzballs)

Black hole
$\epsilon = 0 \quad R = 0$

Compactness
$r_0 = r_+ (1 + \epsilon)$
Quantifying the shades of darkness

\mathcal{R}

Reflectivity

$\epsilon = 0 \quad \mathcal{R} = 0$

Black hole

Large compactness
No absorption
(e.g. gravastars)

Small compactness
No absorption
(e.g. boson stars)

Large compactness
Large absorption
(e.g. tight fuzzballs)

Small compactness
Large absorption
(e.g. diffuse fuzzballs)

$r_0 = r_+ (1 + \epsilon)$
Quantifying the shades of darkness

How do current and future observations constrain this parameter space?

Large absorption (e.g. tight fuzzballs)
Large absorption (e.g. diffuse fuzzballs)

Black hole

$\epsilon = 0 \quad R = 0$

$r_0 = r_+ (1 + \epsilon)$

Reflectivity

Compactness
A compass to navigate the ECO atlas

Buchdhal’s theorem
\[\epsilon > \frac{1}{8} \]

1. Rotating or deformed objects
2. Dissipative fluids
 - Multi-fluids
 - Other matter fields
3. Exotic matter
4. Perfect fluid
5. Decreasing density
6. Staticity
7. Classical
8. Anisotropic fluids
 - Scalar or EM fields
9. ECOs in modified gravity
 - Semi-classical effects
 - Quantum gravity
Evading Buchdhal: anisotropic stars

\[T_{\mu\nu} = T_{\mu\nu}^{\text{ISO}} + \sigma_1 k_\mu k_\nu + \sigma_2 \xi_\mu \xi_\nu + \sigma_3 \eta_\mu \eta_\nu \]

- Covariant framework for anisotropic fluids in GR, ready for 3+1 simulations
- Consistent proxy for ultracompact objects
- Satisfy WEC and SEC; highly-anisotropic configurations violate DEC
- Display all ECO typical phenomenology
Shadows: BH vs Boson Star

- Telling the shadow of a boson star from a Kerr BH is very challenging
- Lot of dirty astrophysics [Gralla 2019-2020]
- Tests based on shadows can at most constrain $\rightarrow \epsilon \sim O(1)$
GW-based tests of ECOs

~point masses: same signal for all objects

tidal effects + spins deformations

absence of horizon absorption effects

merge

different ringdown, tidal disruption, postmerger,

... echoes
ECO spectroscopy

- **Prompt ringdown**: superposition of quasinormal modes (QNMs)
 [e.g. Kokkotas & Schmidt (1999), Berti, Cardoso, Starinets (2009)]

 \[h_+ + i h_\times \sim \sum_i A_i \sin(\omega_i t + \phi_i) e^{-t/\tau_i} \]

- 3G/LISA → O(100-1000) events/yr allowing for BH spectroscopy
 [Berti+ (2016)]

- Overtones also important → multimode/multitone analysis?

- **ECO smoking guns in the prompt ringdown** (shared with modified gravity):
 - Shift of the entire QNM spectrum
 - Extra ringdown modes (e.g., extra polarizations, matter modes) → amplitudes?
 - Isospectrality breaking

- Ringdown parametrizations sufficient for null-hypothesis tests
How does an ECO ringdown?

- Neglecting spin and assuming GR in the exterior → Schwarzschild
- Interior modeled extending the BH membrane paradigm [Damour, Thorne, ...]
- Boundary conditions → viscosity of a fictitious fluid \(\eta_{\text{BH}} = \frac{1}{16\pi} \)

Region not excluded by GW150914

- Axial and polar modes are not isospectral but harder to resolve
How does an ECO ringdown?

- Neglecting spin and assuming GR in the exterior → Schwarzschild
- Interior modeled extending the BH membrane paradigm [Damour, Thorne, ...]
- Boundary conditions → viscosity of a fictitious fluid \(\eta_{BH} = \frac{1}{16\pi} \)

A factor 10 increase in the SNR would constrain the whole region!
[Elisa Maggio – prelim. res.]

- Axial and polar modes are not isospectral but harder to resolve
For ultracompact ECOs ($\varepsilon<0.01$) prompt ringdown is identical to BHs but GW “echoes” at later times

- Only (classical) horizons absorb everything!

- Reflectivity arises in many contexts:
 - Stellar-like regular interior
 - “Fuzziness”
 - Quantum emission from horizon

- Lot of progress on echo waveform modeling and searches [Abedi+, Universe (2020)]
Coherent, analytical template in the FD:

- complex reflectivity
- mixing of polarizations
- spin-dependent modulation
- Many more features than templates used in current searches

Waveforms, templates, and movies available @ http://www.DarkGRA.org/gw-echo-catalogue.html

Near-horizon corrections are within reach!

- Large reflectivity crucial for detection with LIGO/Virgo
- Much better prospects with 3G and LISA
Post-Newtonian inspiral: BH vs ECO

\[\tilde{h}(f) = A(f)e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})} \]

1PN = \frac{v^2}{c^2}

Blanchet, Living Rev. Relativity 17, 2 (2014)
Post-Newtonian inspiral: BH vs ECO

\[\tilde{h}(f) = A(f)e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})} \]

\[1\text{PN} = \frac{v^2}{c^2} \]

Blanchet, Living Rev. Relativity 17, 2 (2014)
Post-Newtonian inspiral: BH vs ECO

\[\tilde{h}(f) = A(f)e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})} \]

1PN \(= \frac{v^2}{c^2}\)

Blanchet, Living Rev. Relativity 17, 2 (2014)

- **2PN:** Point-particle phase depends on **multipole moments** of the bodies

- Tests of the BH no-hair theorem [Hansen 1974]

\[M^\ell_{\text{Kerr}} + iS^\ell_{\text{Kerr}} = M^{\ell+1} (i\chi)^\ell \]

Mass moments Spin moments
Post-Newtonian inspiral: BH vs ECO

\[\tilde{h}(f) = A(f)e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})} \]

1PN = \frac{v^2}{c^2}

Blanchet, Living Rev. Relativity 17, 2 (2014)

2PN: Point-particle phase depends on **multipole moments** of the bodies

- **Tests of the BH no-hair theorem** [Hansen 1974]

\[M_{\ell}^{\text{Kerr}} + iS_{\ell}^{\text{Kerr}} = M^{\ell+1}(i\chi)^{\ell} \]

Mass moments \quad Spin moments

- **ECOs** (axisymmetric case):

\[M_\ell = M_\ell^{\text{Kerr}} + \delta M_\ell \quad S_\ell = S_\ell^{\text{Kerr}} + \delta S_\ell \]

- 3G/LISA can constrain mass quadrupole \((M_2)\) and spin octupole \((S_3)\) [Krishnendu+ 2018]

- In the BH limit \(\rightarrow\) **“hair conditioner”** [Raposo, PP, Emparan, PRD 2019]

\[\frac{\delta M_\ell}{M^{\ell+1}} \rightarrow a_\ell \frac{\chi^{\ell}}{\log \epsilon} + b_\ell \epsilon + \ldots \quad \frac{\delta S_\ell}{M^{\ell+1}} \rightarrow c_\ell \frac{\chi^{\ell}}{\log \epsilon} + d_\ell \epsilon + \ldots \]

(assumes exterior is \(\sim\) GR and curvature near the surface is small)
Post-Newtonian inspiral: BH vs ECO

\[\tilde{h}(f) = \mathcal{A}(f)e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})} \]

1PN = \frac{v^2}{c^2}

Blanchet, Living Rev. Relativity 17, 2 (2014)

- (Stationary) ECOs can break: [fuzzballs: Bianchi+ 2007.01743, 2008.01445; boson stars: Herdeiro+ 2008.10608]
 - equatorial symm.: e.g. $S_2 \neq 0$, $M_3 \neq 0$
 - axial symm.: e.g. $M_{20} \neq 0$, $M_{21} \neq 0$, $M_{22} \neq 0$
Post-Newtonian inspiral: BH vs ECO

\[\tilde{h}(f) = A(f) e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})} \]

\[1 \text{PN} = \frac{v^2}{c^2} \]

Blanchet, Living Rev. Relativity 17, 2 (2014)

- **(Stationary) ECOs can break:** [fuzzballs: Bianchi+ 2007.01743, 2008.01445; boson stars: Herdeiro+ 2008.10608]

 - equatorial symm.: e.g. \(S_2 \neq 0, M_3 \neq 0 \)
 - axial symm.: e.g. \(M_{20} \neq 0, M_{21} \neq 0, M_{22} \neq 0 \)

Embedding diagrams by G. Raposo
Post-Newtonian inspiral: BH vs ECO

\[\tilde{h}(f) = A(f)e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})} \]

1PN = \(\frac{v^2}{c^2} \)

Blanchet, Living Rev. Relativity 17, 2 (2014)

- (Stationary) ECOs can break: [fuzzballs: Bianchi+ 2007.01743, 2008.01445; boson stars: Herdeiro+ 2008.10608]

 - equatorial symm.: e.g. \(S_2 \neq 0, M_3 \neq 0 \)
 - axial symm.: e.g. \(M_{20} \neq 0, M_{21} \neq 0, M_{22} \neq 0 \)

Fuzzballs (in N=2 supergravity):

 - certain multipole ratios are \(\sim \) universal [Bena-Mayerson PRL 2006.10750, 2007.09152]
 - certain multipole invariants are minimum for BHs [Bianchi+ PRL 2007.01743, 2008.01445]

Lot of progress: current waveforms should be extended beyond Kerr symmetries
Post-Newtonian inspiral: BH vs ECO

\[\tilde{h}(f) = A(f)e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})} \]

2.5 log PN: tidal heating [Alvi PRD 2001, Poisson, PRD 2009]

- BHs absorb radiation at horizon
- Tidal heating is \sim absent for ECOs
- Small even for 3G for q\sim 1 \rightarrow IMRIs or LISA

Post-Newtonian inspiral: BH vs ECO

\[
\tilde{h}(f) = \mathcal{A}(f) e^{i(\psi_{PP} + \psi_{TH} + \psi_{TD})}
\]

- **2.5 log PN: tidal heating** [Alvi PRD 2001, Poisson, PRD 2009]
 - BHs absorb radiation at horizon
 - Tidal heating is ~ absent for ECOs
 - Small even for 3G for q~1 → IMRIIs or LISA

- **5PN: tidal deformability and Love numbers** [Flanagan & Hinder, PRD77 021502 2008]
 - Love = 0 for a BH in GR [Damour ‘86, Binnington-Poisson PRD 2009; Damour-Nagar PRD 2009; PP+, PRD 2015]
 (but see Le Tiec-Casal 2007.00214 and Chia 2010.07300 for spinning BHs!)
 - Love \neq 0 for ECOs and BHs in modified gravity [Porto+ Fortsch. Phys. 2016, Cardoso+, PRD 2017]
 - 3G/LISA will be able to distinguish BHs from any boson star model [Cardoso+, PRD 2017]
 - In several ECO models Love scales logarithmically → strong constraints [Maselli+, 2018-2019]
BH vs Boson Stars: coherent model

\[\mathcal{L} = \frac{R}{16\pi G} - \partial_\mu \phi \partial^\mu \phi^* - m^2 |\phi|^2 + \lambda |\phi|^4 + \gamma |\phi|^6 + \ldots \]

Coherent inspiral waveform → all deviations from Kerr (multipoles, tidal, etc) depend only on masses & spins and on the theory’s coupling constants

▶ Tidal deformability strongest, but coherent model significantly improves the constraints

▶ Constraining power of current detectors is marginal: merger detections in 3G/LISA are required to constrain boson-star couplings

[Pacilio+ 2007.05264 PRD 2020]
ECO tests with EMRIs/IMRIs

- EMRIs are unique probes of both multipolar structure and dynamics

- ECO corrections are amplified for small mass-ratio, lessons form EMRIs:
 - Spin-induced multipole moments $\rightarrow \delta \tilde{M}_2 \sim 10^{-4}$ [Barack-Cutler, PRD 2007, Babak+ 2017]
 - Tidal heating \rightarrow large for highly-spinning objects $\rightarrow |\mathcal{R}|^2 \lesssim 10^{-4}$ [Datta+ PRD 2020]
 - Tidal Love numbers $\rightarrow \tilde{\Lambda} \sim 10^{-5}$ [Pani & Maselli 2019]
 - Tests of the Kerr bound ($\chi<1$) could be much simpler and accurate with EMRIs if one can measure the spin of the secondary [Piovano, Maselli, PP, 2003.08448, 2004.02654]

- ECO tests with EMRIs/IMRIs \rightarrow many challenges in modeling, parameter estimation, rates, etc...
Conclusion & Open problems

- Future detectors have superior potential to search for departures from classical BHs → discovery opportunity for new physics

- Very least: orders of magnitude improvements on current constraints

- Dramatic improvements on ECOs on all fronts in the last few years

- Better understanding/modeling is needed (simulations, coalescence, inspiral-merger-ringdown waveforms, and theoretical issues)

- Testing quantum gravity? In the search of a log...

Comprehensive living review: Cardoso & Pani, 1904.05363
for description of the effects, caveats, constraints, and references