Probing cosmic string networks with gravitational waves

Pierre Auclair
auclair@apc.in2p3.fr
Under the supervision of Danièle Steer and Chiara Caprini

Laboratoire Astroparticule et Cosmologie, Université de Paris

June 23, 2020
GReCO seminar
Outline

Introduction to cosmic strings

Gravitational wave emission from cosmic strings

The loop distribution: beyond the Nambu-Goto approximation

Conclusion

References
Introduction to cosmic strings

References:
(Nielsen & Olesen, 1973)
(Kibble, 1976)
(Vilenkin & Shellard, 2001)
(Ringeval, Sakellariadou, & Bouchet, 2007)
(Ringeval, 2010)
(Vachaspati, Pogosian, & Steer, 2015)
Cosmic strings (Kibble, 1976)

1D topological defects

- Cosmic strings are 1D topological defects that may appear after a symmetry breaking phase transition.
- After the phase transition the field *falls* into the new vacuum manifold \mathcal{M}.
- Strings arise if \mathcal{M} is not simply connected, i.e. \mathcal{M} contains holes around which loops can be trapped.
- We expect strings to be formed in most models of spontaneous symmetry breaking.

Figure: String formation in the "Mexican hat" potential $V(|\phi|)$. Figure taken from (Ringeval, 2010)
Cosmic strings (Kibble, 1976)

1D topological defects

- Cosmic strings are 1D topological defects that may appear after a symmetry breaking phase transition.
- After the phase transition the field *falls* into the new vacuum manifold M.
- Strings arise if M is not simply connected, i.e. M contains holes around which loops can be trapped.
- We expect strings to be formed in most models of spontaneous symmetry breaking.

As an example, the Lagrangian for the Nielsen-Olesen string (Nielsen & Olesen, 1973)

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + (D_{\mu} \phi)^* D^{\mu} \phi - \frac{\lambda}{4} (|\phi|^2 - \eta^2)$$
Nambu-Goto strings: the one-dimensional limit

- The width of the string is very small compared to the other length scales in the problem, and the thin string limit is commonly adopted.
- Then the string is simply modeled as a line with mass per unit length $\mu \propto T^2$ using the Nambu-Goto action which minimizes the area swept by the string

$$S = -\mu \int \sqrt{-\det(\gamma)} d^2\zeta$$

$\zeta^a = (t, \zeta)$ and γ_{ab} the induced metric on the string

<table>
<thead>
<tr>
<th>Energy scale</th>
<th>Width</th>
<th>Linear density</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUT: 10^{16} GeV</td>
<td>2×10^{-32} m</td>
<td>$G\mu \approx 10^{-6}$</td>
</tr>
<tr>
<td>3×10^{10} GeV</td>
<td>5×10^{-27} m</td>
<td>$G\mu \approx 10^{-17}$</td>
</tr>
<tr>
<td>10^8 GeV</td>
<td>2×10^{-24} m</td>
<td>$G\mu \approx 10^{-22}$</td>
</tr>
<tr>
<td>EW: 100 GeV</td>
<td>2×10^{-18} m</td>
<td>$G\mu \approx 10^{-34}$</td>
</tr>
</tbody>
</table>
Closed loops of cosmic strings
Oscillation and gravitational wave emissions

The general solution for a Nambu-Goto string in a Minkowski background is

\[\vec{X}(t, \zeta) = \frac{1}{2} \left[\vec{a}(\zeta - t) + \vec{b}(t + \zeta) \right] \]

\[\vec{a}'^2 = \vec{b}'^2 = 1 \]

For a closed loop \(X^\mu(t, \zeta + \ell) = X^\mu(t, \zeta) \). One can show that the loop oscillates with a period \(T = \frac{\ell}{2} \).

These oscillations lead to a gravitational radiation. The quadrupole formula can give a rough estimate of the power emitted (Vilenkin & Shellard, 2001)

\[\dot{E} \approx G \left(\frac{d^3D}{dt^3} \right)^2 \approx GM^2 L^4 \omega^6 \approx \Gamma G \mu^2 \]

in which \(D \approx ML^2 \) is the quadrupole moment, \(M = \mu L \) is the mass and \(\omega \approx \frac{1}{L} \) the characteristic frequency.

NOTE: it does not depend on the loop length!
Typical properties of cosmic strings

Loop formation and scaling

- When strings intersect, they change partner
- Analytical arguments and numerical simulations show the existence of an attractor solution independent of initial conditions called **scaling**
- During scaling, all length-scales are proportional to t cosmic time.
- In particular, it means loop can survive until today

$$\rho_\infty \propto t^{-2} \propto \begin{cases} a^{-4} & \text{during radiation era} \\ a^{-3} & \text{during matter era} \end{cases}$$

Figure: (Ringeval et al., 2007)
Observational signatures of cosmic strings
Selection of observational signatures

- CMB: line discontinuities in the temperature or polarization patterns, and statistical methods based on calculations of various correlation functions. $G\mu < \text{few} \times 10^{-7}$
- 21-cm: brightness fluctuations or spatial correlations between the 21 cm and CMB anisotropies. Future experiments can in principle constrain $G\mu \approx 10^{-10} - 10^{-12}$
- The metric around a cosmic string can result in characteristic lensing patterns of distant light sources.

Figure: CLS-1, discovered in 2003, raised a lot of interest from the cosmic strings community but turned out to be two similar galaxies close to each other.
Gravitational wave emission from cosmic strings

References in this section:
(Vachaspati & Vilenkin, 1985)
(Damour & Vilenkin, 2001)
(Siemens et al., 2006)
(Blanco-Pillado & Olum, 2017)
(Abbott et al., 2018)
(Collaboration & the Virgo Collaboration, 2019)
(Auclair, Blanco-Pillado, et al., 2019)
A typical loop will have a number of kinks and cusps, and the spectrum of high frequency gravitational radiation emitted from a string depends on these features:

- **Kinks** are discontinuities in the tangent vector of the string. Kinks are formed when strings intercommute and travel along the string at the speed of light, \(q = \frac{5}{3} \).
- **Cusps** travel instantly at the speed of light, \(q = \frac{4}{3} \).

The waveform of the gravitational wave arriving at the detector is known (Damour & Vilenkin, 2001)

\[
h_q(\ell, z, f) = A_q(\ell, z, f) f^{-q} \quad , \quad A_q = g_{1,q} \frac{G\mu \ell^{2-q}}{(1 + z)^{q-1} r(z)}
\]
Rate of bursts

For a given loop distribution, you can estimate the GW burst rate (Siemens et al., 2006)

\[
\frac{d^2 R_q}{dV d\ell} = \frac{1}{1+z} \times \frac{d^3 \nu_q}{dt d\ell dV} \times \Delta_q
\]

as a function of

- \(\Delta_q\) geometrical factor for the fraction of GWs you can access (linked to a beaming angle)
- \(\frac{d^3 \nu_q}{dt d\ell dV} = \frac{2}{\ell} N_q \frac{d^2 N}{d\ell dV}\) number of events per space time volume per unit length
- \(N_q\) mean number of events per oscillation, which is supposed to be a fixed number.
- \(z\) redshift at emission

The effective burst rate in the detector depends on its sensitivity.

\[
R_q = \int dA_q \ e_q(A_q) \frac{dR_q}{dA_q} (G\mu, N_q)
\]
LIGO/Virgo burst search during O1

The parameter space \((G\mu, N_q)\), is scanned and excluded at a 95% level when \(R_q\) exceeds \(2.996/T_{\text{obs}}\) which is the rate expected from a random Poisson process over an observation time \(T_{\text{obs}}\).

- No cosmic string burst detected during O1 and O2 runs
- Allows to put upper bounds on the string tension which are not very competitive with respect to the Stochastic Background of GW
- We are currently involved in the LIGO/Virgo collaboration to produce constraints for the O3 run

Figure: (Abbott et al., 2018)
Emission of gravitational waves by a cosmic string loop

\[\dot{E} = \Gamma G \mu^2, \quad \Gamma = \sum_m P_m = \mathcal{O}(50) \]

- All the energy radiated by loops is converted to gravitational waves
- An effective average power \(P_m \) emitted in mode \(m \) determined by simulations and/or analytical arguments

The high frequency regime is dominated by contributions from burst-like events

\[P_m \propto \begin{cases} m^{-4/3} & \text{for cusps} \\ m^{-5/3} & \text{for kinks} \end{cases} \]

Low-frequency modes are dominated by the oscillations of the loops

Figure: Averaged power spectrum determined numerically in (Blanco-Pillado & Olum, 2017)
The stochastic background of gravitational waves

The uncorrelated sum of all the GW signals produced by cosmic string loops during the History of the Universe constitutes a Stochastic Background of GW.

We can estimate this background using energetic arguments:

\[\Omega_{GW}(\ln f) = \frac{8\pi G}{3H_0^2} f \rho_{GW} \]

\[\rho_{GW}(f) = \int_0^{t_0} \frac{dt}{[1 + z(t)]^4} P_{gw}(t, f') \frac{\partial f'}{\partial f} \]

\[P_{gw}[t, f'] = G\mu^2 \sum_m \frac{2m}{fr^2} P_m \frac{d^2N}{d\ell dV}[\frac{2m}{f'}, t] \]

The loop distribution \(\frac{d^2N}{d\ell dV} \) remains to be specified, more in the next section.
• The constraint from burst is less stringent than the one from stochastic
• The intercommutation probability p is set to 1 in the present seminar
• There is a huge disparity between different models especially on these relatively high-frequency experiments. More on that later

Figure: 95% confidence exclusion regions (Abbott et al., 2018)
Projected constraints for LISA (Auclair, Blanco-Pillado, et al., 2019)

Analysis done within the LISA cosmology working group

$$\Omega_{gw}(f \to \infty) \propto \sqrt{\frac{G\mu}{\Gamma}}$$

Figure: A comparison of the LISA sensitivity curve to the predicted SBGW. LISA will probe strings with tensions higher than $G\mu = 10^{-17}$ with little dependence on the cosmic string model.
Projected constraints for LISA (Auclair, Blanco-Pillado, et al., 2019)

Analysis done within the LISA cosmology working group

Figure: A comparison of the LISA sensitivity curve to the predicted SBGW. LISA will probe strings with tensions higher than $G\mu = 10^{-17}$ with little dependence on the cosmic string model.
Projected constraints for LISA (Auclair, Blanco-Pillado, et al., 2019)

Analysis done within the LISA cosmology working group

Figure: A comparison of the LISA sensitivity curve to the predicted SBGW. LISA will probe strings with tensions higher than $G\mu = 10^{-17}$ with little dependence on the cosmic string model.
The loop distribution: beyond the Nambu-Goto approximation

References
(Hindmarsh, Stuckey, & Bevis, 2009)
(Vachaspati, 2010)
(Blanco-Pillado, Olum, & Shlaer, 2011)
(Mota & Hindmarsh, 2015)
(Matsunami, Pogosian, Saurabh, & Vachaspati, 2019)
(Auclair, Steer, & Vachaspati, 2019)
• So far we have studied Nambu-Goto strings, ie. infinitely thin strings
• Large-scale field-theory simulations find that cosmic strings decay rapidly into particles (Hindmarsh et al., 2009)
• High resolution field theory simulation of single loops tend to show that their lifetime is actually longer that previously expected (Matsunami et al., 2019)
• The rate at which strings emit particles has been measured in high-resolution numerical simulations
• We propose a first step to bridge the gap between Nambu-Goto strings and field-theory strings

Figure: Energy of a loop with the initial size of 390 lattice spacings plotted vs time. (Matsunami et al., 2019)
Energy budget for a cosmic string loop

We parametrize the energy lost by an average loop with J, remember that for cosmic string loops, $E = \mu \ell$

$$\frac{D\ell}{Dt} = -\Gamma \mu J(\ell)$$

Where

- $J(\ell) = 1$ if GW emission is the only channel for losing energy
- $J(\ell) = 1 + \frac{\ell_k}{\ell}$ if kinks are present on the loop
- $J(\ell) = 1 + \sqrt{\frac{\ell_c}{\ell}}$ if cusps are present on the string
- $J(\ell) = \Theta(\ell - \ell_V)$ in the case of superconducting strings

$$\ell_k \sim \beta_k \frac{w}{\Gamma G\mu} \propto (G\mu)^{-3/2}, \quad \ell_c \sim \beta_c \frac{w}{(\Gamma G\mu)^2} \propto (G\mu)^{-5/2}, \quad \ell_V = \frac{N}{\sqrt{\mu}}$$
Modeling the loop distribution with a continuity equation (Auclair, Steer, & Vachaspati, 2019)

Non self-intersecting loops are produced from the network of infinite strings and then lose energy

\[
\frac{\partial}{\partial t} \left(a^3 \frac{d^2 N}{d\ell dV} \right) + \frac{\partial}{\partial \ell} \left(a^3 \frac{D\ell}{Dt} \frac{d^2 N}{d\ell dV} \right) = a^3 P(\ell, t)
\]

which, in terms of our length-dependent energy-loss channel becomes

\[
\frac{\partial}{\partial t} \left(a^3 \frac{d^2 N}{d\ell dV} \right) - \Gamma G_\mu \frac{\partial}{\partial \ell} \left(a^3 J(\ell) \frac{d^2 N}{d\ell dV} \right) = a^3 P(\ell, t)
\]

Introducing the new variables

\[
\tau \equiv \Gamma G_\mu t, \quad \xi \equiv \int \frac{d\ell}{J(\ell)}.
\]

the continuity equation becomes

\[
\left(\frac{\partial}{\partial \tau} \bigg|_\xi - \frac{\partial}{\partial \xi} \bigg|_\tau \right) \left(\Gamma G_\mu J a^3 \frac{d^2 N}{d\ell dV} \right) = a^3 J P,
\]
Modeling the loop distribution

Solution for a \(\delta\)-function loop production function

The shape of the loop production function (LPF) has been studied in numerical simulations but it is still a matter of debate. Simplest choice coming from the standard one-scale model is to assume

\[
\mathcal{P}(\ell, t) = Ct^{-5} \delta\left(\frac{\ell}{t} - \alpha\right)
\]

which seems to reproduce well (Blanco-Pillado et al., 2011) and can be used as a Green’s function for more elaborate LPF. The loop formation time \(t^*_\star\) satisfies the following equation

\[
\Gamma G\mu t^*_\star + \xi(\alpha t^*_\star) = \Gamma G\mu t + \xi(\ell),
\]

and the loop distribution is given by

\[
t^4 \frac{d^2 \mathcal{N}}{d\ell dV} = C \frac{1}{\mathcal{J}(\ell)} \frac{\mathcal{J}(\alpha t^*_\star)}{\alpha + \Gamma G\mu \mathcal{J}(\alpha t^*_\star)} \left(\frac{t^*_\star}{t}\right)^{-4} \left(\frac{a(t^*_\star)}{a(t)}\right)^3.
\]

If \(J(\ell) = 1\) then \(\xi(\ell) = \ell\) it reduces to the standard scaling Nambu-Goto loop distribution for a delta-function loop production function

\[
t^4 \frac{d^2 \mathcal{N}}{d\ell dV} = C \frac{(\alpha + \Gamma G\mu)^{3-3\nu}}{(\gamma + \Gamma G\mu)^{4-3\nu}}
\]
Consequences on the number of loops
Modeling the loop number density with both GW and particle emission

(a) Influence of kinks, $G\mu = 10^{-17}$

(b) Influence of cusps, $G\mu = 10^{-17}$

Figure: From bottom to top, the curves show snapshots of the loop distribution at redshifts $z = 10^{13}, 10^{11}, 10^9, 10^7, 10^5$, and the black curve is the scaling NG loop distribution
Impact on the SBGW

Breaking of the high frequency plateau

A consequence of the introduction of ℓ_k, ℓ_c is that the high frequency plateau is cutoff at

$$f = \sqrt{\frac{2H_0\sqrt{\Omega_{\text{rad}}c}}{\ell_{c,k}\Gamma G\mu}}$$
Particle emission bounds

Injected energy by cosmic strings (Mota & Hindmarsh, 2015; Vachaspati, 2010)

- The emitted particles are heavy and in the dark particle physics sector corresponding to the fields that make up the string
- We assume that there is some interaction of the dark sector with the standard model sector

The energy density injected by cosmic strings per unit of time

\[
\Phi_H(t) = \int_0^{\alpha t} P_{c,k} \frac{d^2 N}{d\ell' dV} d\ell'
\]

in which

\[
P_k = \Gamma G \mu \frac{\ell_k}{\ell} \quad P_c = \Gamma G \mu \sqrt{\frac{\ell_c}{\ell}}
\]

Then the emitted particle radiation will eventually decay, and a significant fraction of the energy \(f_{\text{eff}} \sim 1 \) will cascade down into \(\gamma \)-rays.

\[
\omega_{\text{DGRB}} = f_{\text{eff}} \int_{t_c}^{t_0} \frac{\Phi_H(t)}{(1 + z)^4} dt
\]
Contribution of cosmic strings to the Diffuse Gamma-Ray Background

Constraints from Fermi-LAT

\[\omega_{\text{DGRB}}^{\text{obs}} \leq 5.8 \times 10^{-7} \text{ eV.cm}^{-3} \]

(a) Contribution from kinks, for small \(G\mu \), \(\omega_{\text{DGRB}} \propto \mu^{9/8} \) and \(\mu^{-2} \log \mu \) for large \(G\mu \)

(b) Contribution from cusps, for small \(G\mu \), \(\omega_{\text{DGRB}} \propto \mu^{13/12} \) and \(\mu^{-5/3} \) for large \(G\mu \)
Conclusion

Summary

- Cosmic strings are a general prediction of most symmetry-breaking models.
- **Scaling** means that the network of cosmic strings survives for a very long time.
- Gravitational wave astronomy is one of the most promising techniques to probe for cosmic strings, especially with the space-based detector LISA which will be able to probe cosmic strings with tension $G\mu \geq 10^{-17}$.
- We have tried to go beyond the Nambu-Goto approximation by taking into account the emission of particles which seems to dominate in Field-Theory simulations on small scales.
- Our analysis show that this phenomenon has little effect on the Stochastic Background.
- We have also checked that this emission of particles does not violate bounds for the diffuse Gamma-Ray Background.
Conclusion

Future developments

- It is important to evaluate more carefully the prevalence of kinks versus cusps on cosmological string loops.
- It would also be interesting to study other loop production functions, particularly power-law LPF which predict a larger number of small loops; hence one might expect a larger gamma ray background from strings.
- We are also applying these tools to the study of vortons together with Danièle Steer, Patrick Peter and Christophe Ringeval.
Thank you
References I

References II

References III

